optimization with the time-dependent navier-stokes equations as constraints
نویسندگان
چکیده
in this paper, optimal distributed control of the time-dependent navier-stokes equations is considered. the control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. a mixed numerical method involving a quasi-newton algorithm, a novel calculation of the gradients and an inhomogeneous navier-stokes solver, to find the optimal control of the navier-stokes equations is proposed. numerical examples are given to demonstrate the efficiency of the method.
منابع مشابه
Optimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملA Subgrid Model for the Time-Dependent Navier-Stokes Equations
We propose a stabilized subgrid finite-element method for the two-dimensional 2D nonstationary incompressible Naver-Stokes equation NSE . This method yields a subgrid eddy viscosity which does not act on the large flow structures. The proposed eddy viscous term is constructed by a fluctuation operator based on an L2-projection. The fluctuation operator can be implemented by the L2-projection fr...
متن کاملTopology Optimization of Navier–Stokes Equations
We consider the problem of optimal design of flow domains for Navier–Stokes flows in order to minimize a given performance functional. We attack the problem using topology optimization techniques, or control in coefficients, which are widely known in structural optimization of solid structures for their flexibility, generality, and yet ease of use and integration with existing FEM software. Top...
متن کاملCompressible Navier-stokes Equations with Temperature Dependent Heat Conductivities
We prove the existence and uniqueness of global strong solutions to the one dimensional, compressible Navier-Stokes system for the viscous and heat conducting ideal polytropic gas flow, when heat conductivity depends on temperature in power law of Chapman-Enskog. The results reported in this article is valid for initial boundary value problem with non-slip and heat insulated boundary along with...
متن کاملThe Navier-Stokes Equations with Particle Methods
The non-stationary nonlinear Navier-Stokes equations describe the motion of a viscous incompressible fluid flow for 0 < t 6 T in some bounded three-dimensional domain. Up to now it is not known wether these equations are well-posed or not. Therefore we use a particle method to develop a system of approximate equations. We show that this system can be solved uniquely and globally in time and tha...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
computational methods for differential equationsجلد ۳، شماره ۲، صفحات ۸۷-۹۸
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023